10 research outputs found

    Diseño de circuitos CMOS de ultra bajo consumo para energy harvesting

    Get PDF
    Las redes de sensores inalámbricas están logrando un desarrollo notable en multitud de aplicaciones, por lo que se prevé que sea una de las tecnologías de mayor desarrollo en los próximos años. En especial, su aplicación en entornos de Inteligencia Ambiental (Ambient Intelligence, AmI) es una de las más destacadas. Este término hace referencia a la perfecta integración de la tecnología en el entorno (hogar, automóvil, oficina, ecosistemas, etc.). Esto provoca que las inversiones de instituciones y capital privado sea cada vez mayor, generando así una gran expectativa. Sin embargo muchos escenarios AmI requieren una infinidad de nodos microsensores inalámbricos formando redes ad hoc para la captación, procesado, y transmisión de información. Esta visión no es energéticamente viable si no se logra una considerable reducción en el consumo de estos nodos. Para que el despliegue de estas redes de nodos alimentados por baterías sea factible, debería lograrse que estos microsensores fueran altamente integrados y energéticamente eficientes. Ambos factores permiten la reducción del tamaño del microsensor, de su coste y de su impacto medioambiental. Entre los objetivos más deseados se encuentran el desarrollo de sistemas electrónicos que permitan una mayor eficiencia en la captación de energía y al tiempo una mayor densidad de integración que minimice el tamaño del microsensor. Ambos aspectos están muy ligados ya que una mayor eficiencia permite reducir las dimensiones del transductor que capta energía (fotodiodo, acelerómetro, etc.). Este proyecto pretende contribuir en esta línea mediante el desarrollo de circuitos microelectrónicos de alta eficiencia para la captación, almacenamiento y gestión de la energía disponible en el entorno.Ingeniería de TelecomunicaciónTelekomunikazio Ingeniaritz

    Energy-efficient amplifiers based on quasi-floating gate techniques

    Get PDF
    Energy efficiency is a key requirement in the design of amplifiers for modern wireless applications. The use of quasi-floating gate (QFG) transistors is a very convenient approach to achieve such energy efficiency. We illustrate different QFG circuit design techniques aimed to implement low-voltage energy-efficient class AB amplifiers. A new super class AB QFG amplifier is presented as a design example including some of the techniques described. The amplifier has been fabricated in a 130 nm CMOS test chip prototype. Measurement results confirm that low-voltage ultra low power amplifiers can be designed preserving at the same time excellent small-signal and large-signal performance.This research was funded by AEI/FEDER, grant number PID2019-107258RB-C32

    Power efficient simple technique to convert a reset-and-hold into a true-sample-and-hold using an auxiliary output stage

    Get PDF
    A technique to implement true-sample-and-hold circuits that hold the output for almost the entire clock cycle without resetting to zero is introduced, alleviating the slew rate requirement on the op-amp. It is based on a Miller op-amp with an auxiliary output stage that increases power dissipation by only 1.3%. The circuit is offset-compensated and has close to rail-to-rail swing. Experimental results of a test chip prototype in 130nm CMOS technology with 0.3mW power dissipation are provided, which validate the proposed technique.This work was supported by a Grant TEC2016-80396-C2 (AEI/FEDER). The work of Héctor Daniel Rico-Aniles was supported by the Mexican Consejo Nacional de Ciencia y Tecnología (CONACYT) through an academic scholarship under Grant 408946
    corecore